There are three types of color mixing models, depending on the relative brightness of the resultant mixture: additive, subtractive, and average. In these models, mixing black and white will yield white, black and gray, respectively. Physical mixing processes, e.g. mixing light beams or , will follow one or a hybrid of these 3 models. Each mixing model is associated with several color models, depending on the approximate primary colors used. The most common color models are optimized to human trichromacy, therefore comprising three primary colors.
The most common additive color model is the RGB color model, which uses three primary colors: red, green, and blue. This model is the basis of most color displays. Some modern displays are multi-primary color displays, which have 4-6 primaries (RGB, plus cyan, yellow and/or magenta) in order to increase the size of the color gamut. For all additive color models, the absence of all primaries results in black. For practical additive color models, an equal superposition of all primaries results in neutral (gray or white). In the RGB model, an equal mixture of red and green is yellow, an equal mixture of green and blue is cyan and an equal mixture of blue and red is magenta. Yellow, cyan and magenta are the secondary colors of the RGB model.
The most common subtractive color models are the CMYK color model, CMY color model and RYB color model. The CMYK model used in color printing uses cyan, magenta, yellow, and black primaries. For all subtractive color models, the absence of all color primaries results in white. For ideal subtractive color models, an equal superposition of all primaries results in a neutral (dark gray or black). The CMYK model adds a black primary to improve the darkness of blacks, where the CMY model can only mix to dark gray or only achieves black inefficiently, i.e. by using lots of the primary pigments. In the CMY model, an equal mixture of cyan and magenta is blue, an equal mixture of magenta and yellow is red and an equal mixture of yellow and cyan is green. These mixtures are the secondary colors of the CMY model, which are the same as the primaries of the additive RGB model and vice versa.
For example, mixing red and yellow can result in a shade of orange, generally with a lower chroma or reduced saturation than at least one of the component colors. In some combinations, a mix of blue and yellow paint produces green. This occurs when there is sufficient transparency in the pigments, allowing light to penetrate into the mixed paint, where the two colors together absorb light except wavelengths in the green range. Alternately, if the pigments are highly opaque, a combination of blue and yellow paint appears more grayish. In this case, pigment particles simply reflect whatever light hits the outer paint surface, where both blue and yellow light gets reflected and averaged together.
Halftone printing uses non-opaque inks, such that the light transmits once through the ink, reflects off the white substrate (e.g. paper) and transmits a second time through the ink. Increasing the ink printed on the page decreases the brightness of light, and halftone printing follows the subtractive model well.
|
|